

NATIONAL ENERGY TECHNOLOGY LABORATORY

Overview of NETL's High Temperature Heat Transfer and Film Cooling Test Facility

D. Straub, S. Beer, K. Casleton, T. Sidwell, M. Alvin, M. Chyu¹, and S. Chien¹
National Energy Technology Laboratory

¹University of Pittsburgh

2011 UTSR Workshop

October 25-27, 2011 Columbus, OH

National Energy Technology Laboratory

MISSION

Advancing energy options to fuel our economy, strengthen our security, and improve our environment

Oregon

Pennsylvania

West Virginia

NETL Full-Spectrum Capacity for Innovation

- DOE national laboratory dedicated to energy RD&D
- Economy-wide perspective on energy challenges
- 100 years of energy technology RD&D experience

Only government owned & operated DOE national laboratory

- Unbiased approach reflecting national priorities
- Direct taxpayer accountability for funding

Combination of research expertise and contracting capabilities

- Expertise & equipment to perform & evaluate RD&D
- Collaboration, contracting, counsel, communication

- Established relationships within academia, industry & governments
- Broad vision of the energy technology landscape
- Roundhouse for intellectual capital & tech transfer

Market-facing basic & applied science

- Explicit targets to deliver technology innovations
- Public / private cost sharing

National Energy Technology Laboratory

Regional University Alliance NETL's Institute for Advanced Energy Studies

Leveraging National Lab and University-Based Scientific and Engineering
Assets to Address Significant National Energy Issues

Outline

- Overview high temperature/high pressure test facility
 - Hardware and facility capabilities
 - Experimental approach
 - Optical surface temperature mapping
 - Lessons learned
- Overview results of collaboration with University of Pittsburgh
- Future work
- Summary

Project Background

Modify an existing high pressure combustion rig

- Provide "realistic" hot gas path conditions for collaborative efforts
- "Proof-of-concept" testing for cooling and sensors
 - Intermediate scale facility

Facility and Rig Capabilities

Facility capabilities

- 2 lb/s air flow @ 700 psi
- 800-900 F air preheat (independent control)

Rig capabilities

- 2 lb/s air flow @ 10 atm
- Max inlet air temperature (800F)
- Natural gas or hydrogen fuels

Combustor design

- Swirl-stabilized
- Lean premixed gaseous fuel
- Diffusion pilot (12 jets)
- Quartz combustor liner
 - No dilution cooling jets
 - No upstream film cooling

Experimental Setup

- Heat transfer section
 - Refractory lined walls
 - Transition to rectangular cross-section
 - Nominal 4" ID to 5"x 2" flow channel
 - Test samples
 - Haynes 230 coupons
 - 2" x 2" x 0.25" thick
 - Flush with interior walls
 - With and without TBC's
 - External viewport
 - Commercial quartz flange
 - Internal viewport
 - 3" OD x ½" thick quartz
 - Flush with inner wall

Test Coupon

Hot gas flow

Optical viewports

Independent Parameters

- Operating pressure (1-10 atm)
- Hot gas temperature (1000C → ?)
- Hot gas path velocity
 - Limited by flashback and blowoff in combustor premixer
- Cooling air mass flowrate
 - Blowing ratio
- Test sample design
 - Without TBC
 - With TBC
 - Film cooling design

Test Coupon

Optical viewports

Experimental Approach

How are surface temperatures measured?

- Measure q" with and without coolant flows $\Delta q_{red} = 1 \frac{q''_{coolant}}{"}$
- Calculate heat flux

$$- q''=k \Delta T/\Delta t$$

- Gas temperature is measured using TC
- Calculate heat transfer coefficient, h_o

$$- h_o = q''/(T_g-T_{s1})$$

Cold Side Temperature Measurements

Hot

Cold

Surface Temperature Measurement Approach

- Emissivity Corrected Pyrometer
 - Measures surface emissivity @ 905nm
- B&W CCD camera
 - Bandpass (900nm) filter
 - Calibrated against BB source

Hot Surface Temperature Measurement Issues

- Optical approach cannot differentiate between reflected and emitted photons
 - Uncertainty analysis to understand impact
 - Design of a multi-color probe in progress (Apogee Scientific)
 - Developing other options too!

Sample coupon

Uncertainty Analysis

Sample coupon

Multiple TC's

Measured signal is sum of reflected and emitted radiation

$$I_{\text{meas}} = (1 - \varepsilon) \cdot I_{\text{wall}} + \varepsilon \cdot I_{\text{s}}$$

 In this simplified approach, assume aerothermal module interior (except test coupon) behaves as blackbody. With Wien's approx. to Planck's law -

$$I_{i} = \frac{2 \cdot h \cdot c^{2}}{\lambda^{5}} \cdot e^{\left(\frac{-C_{2}}{\lambda \cdot T_{i}}\right)}$$

• The sample-coupon temperature can then be written:

$$T_{s} = \frac{-C_{2}}{\lambda} \cdot \frac{1}{\ln \left[\frac{1}{\epsilon} \cdot e^{\frac{-C_{2}}{\lambda} \cdot T_{meas}} - \left(\frac{1-\epsilon}{\epsilon}\right) \cdot e^{\frac{-C_{2}}{\lambda} \cdot T_{wall}}\right]}$$

Estimated Bias In IR Mapping

(Low emissivity)

Estimated Bias In IR Mapping

(High emissivity)

Criteria for Uncertainty?

Variability of +/- 25% in the external convective heat transfer coefficient is acceptable

What is the <u>acceptable</u> level of variation in the hot-side surface temperature, T_{s1} ?

Fixed:
$$T_{s1} = \frac{t \cdot h_o}{k} T_g^{\text{Fixed:}} + T_{s2}$$

$$T_{s1} = \frac{t \cdot h_o}{1 + \frac{t \cdot h_o}{k}}$$

$$K = k(T)$$
Bounded by experimental observations

Criteria for Uncertainty?

 $(T_{gas}=1000C, thickness = 0.25")$

TIS -- An Accurate High Speed Alternative

- Apogee Scientific (small business Englewood, CO)
 - High speed thermal imaging system (TIS) applied to combustion processes in reciprocating engines (Automotive Engineering International, April 2010 and Automotive Design, September 2010)
- **NETL/Apogee subcontract to design high-temperature** thermal imaging system for NETL's Aerothermal Test Rig
 - Probe design complete

Seeking industrial partnership to continue probe fabrication and testing at simulated turbine conditions

Lessons Learned

- Quartz is a robust material, but . . .
 - Contact stresses can ruin your day
 - Devitrification can ruin your measurement
- Haynes 230 is a good material, but . . .
 - Emissivity varies with oxidation
 - Thermal aging effects
 - Measured heat flux varies with exposure time
- TBCs prevent oxidation but lower emissivity affects optical surface temp. measurements
- Attempts to maintain smooth interior walls were not successful
- Good surface temperature measurement is an art

NETL/UNIVERSITY OF PITTSBURGH COLLABORATION ON FILM COOLING SAMPLES

NETL/Pitt Test Plan

- **Fuel composition (natural gas)**
- Gas temperature
 - Nominal 1000C (1835F)
 - Minimize devitrification of quartz window

No

2

3

4

5

6

Flat Plate

Trench

Shaped-Laidback

Fan Hole

1 - 3 atm

- 15,000<Re₁<60,000
- **Coolant (air) flowrate**
 - Blowing ratio (0-3)

0 0 0 0	

NETL/Pitt Collaboration Status Summary

- Five film cooled coupons tested
 - 30 degree cylindrical hole design
 - Haynes 230
 - Haynes 230/MCrAIY/8-YSZ TBC
 - Trench with 30 degree holes
 - Haynes 230
 - Haynes 230/MCrAIY/8-YSZ TBC
 - Shaped hole @ 30 degrees
 - Haynes 230

Trench Coupon – Backside TC

Approx. 2 hole diameters from trailing edge of hole

Hot

Cold

Preliminary Test Results

Welded TC leads seem to provide highest temperature

- Performance indicator
 - Overall effectiveness

$$\phi = \frac{T_g - T_{s2}}{T_g - T_c}$$

Trench Coupon – Repeatability (No TBC)

30 deg Cylindrical Hole Coupon – Repeatability (with TBC)

TBC Effects - Trench Coupon

$$\phi = \frac{T_g - T_{s2}}{T_g - T_c}$$

TBC Effects – Cylindrical Hole Coupon

Trench Coupon vs Cylindrical Hole Coupon With TBC

Fan-Shaped Hole Coupon

- TC attachment approach was changed
 - Two embedded TC's
 - Two TC's welded to surface

New Line of Backside TC Locations

TC's embedded 50% of thickness

TC's welded equidistance between embedded TC's

Fan-Shaped Hole Coupon (Painted Black vs As-Machined)

Trench Coupon vs Shaped Holes

Thermal Images of Hot Side

(Coupons Painted Black; Function of Blowing Ratio, BR)

Current Status of Test Rig

- Preliminary film cooling coupon tests completed
 - University of Pittsburgh
- Develop In-situ LDV Capabilities
 - All safety documentation has been addressed and permit to operate has been received
 - Laser safety enclosure designed, installed, and tested
 - Laser power supply failed during shakedown testing
- Ash Deposition Studies (WVU)
 - Particle seeder calibration complete
 - Hot shakedown testing started

Plans for FY12 to Include CFD Effort Using Commercial Software

Preliminary CFD Results

Experimental Results

Summary

- NETL high temperature test facility is operational
 - Some improvement required for non-contact IR temperature mapping
- Preliminary film cooling tests completed
 - University of Pittsburgh
- In-situ LDV capability is in place
 - Testing postponed due to laser repairs
- Ash deposition capability is in place
 - West Virginia University
- Developing CFD capability using ANSYS/Fluent Software
- University and industrial collaboration is encouraged